Competition Policy in Innovative Industries

Jacob Seifert

University of St Andrews

CRESSE – July 4, 2014
Introduction

- Question: to what extent should innovation be viewed as a mitigating factor to otherwise harmful, anti-competitive conduct?
Introduction

- Question: to what extent should innovation be viewed as a mitigating factor to otherwise harmful, anti-competitive conduct?
- Prevailing view is that recognising the benefits of innovation leads to lower ‘harm’ and therefore more lenient policy
Question: to what extent should innovation be viewed as a mitigating factor to otherwise harmful, anti-competitive conduct?

Prevailing view is that recognising the benefits of innovation leads to lower ‘harm’ and therefore more lenient policy

E.g. 1: Manne and Wright (2010) argue that benefits of innovation should be recognised in order to avoid costly type I errors

E.g. 2: In Jerrold (1961), US court judged alleged tying conduct under rule of reason approach rather than per se illegality

E.g. 3: Refusals to license in US (e.g. Xerox (2000))
Economic Literature & Contribution

- Hylton and Lin (2014) and Immordino et al. (2011): taking innovation into account will result in a more lenient policy
Economic Literature & Contribution

- Hylton and Lin (2014) and Immordino et al. (2011): taking innovation into account will result in a more lenient policy
- This is a consequence of bundling innovation with another, potentially anti-competitive action
Hylton and Lin (2014) and Immordino et al. (2011): taking innovation into account will result in a more lenient policy.

This is a consequence of bundling innovation with another, potentially anti-competitive action.

Contribution:

1. Separate a firm’s decision to innovate clearly from its decision to engage in secondary, potentially anti-competitive action.
 - Innovation should only be considered mitigating factor to the extent that firms would not have innovated *without* taking a/c action.

2. Application to optimal policy (in cost of decision error sense).
 - Optimal policy is in fact harsher when anti-competitive actions occur in combination with innovation rather than in isolation.
One firm, faces a choice over 2 general actions:

1. A generic, anti-competitive action:
 - scales up ratio of price to marginal cost by \((1 + \Delta m)\), \(\Delta m > 0\)
 - scales down marginal cost by \((1 + \Delta c_A)\), \(\Delta c_A \geq 0\)

2. Innovation:
 - scales down costs by \((1 + \Delta c_I)\), \(\Delta c_I \geq 0\)
 - entails a private cost \(z > 0\)

\(\Delta c_I\) and \(\Delta c_A\) are realised by the firm as random draws from suitably defined densities \(\phi_{c_A}(\Delta c_A)\) and \(\phi_{c_I}(\Delta c_I)\).
The Framework

- One firm, faces a choice over 2 general actions:

1. A generic, anti-competitive action:
 - scales up ratio of price to marginal cost by \((1 + \Delta_m), \Delta_m > 0\)
 - scales down marginal cost by \((1 + \Delta_{cA}), \Delta_{cA} \geq 0\)
The Framework

- One firm, faces a choice over 2 general actions:

1. A generic, anti-competitive action:
 - scales up ratio of price to marginal cost by $(1 + \Delta_m)$, $\Delta_m > 0$
 - scales down marginal cost by $(1 + \Delta_{cA})$, $\Delta_{cA} \geq 0$

2. Innovation:
 - scales down costs by $(1 + \Delta_{ci})$, $\Delta_{ci} \geq 0$
 - entails a private cost $z > 0$
The Framework

- One firm, faces a choice over 2 general actions:

 1. A generic, anti-competitive action:
 - scales up ratio of price to marginal cost by \((1 + \Delta_m)\), \(\Delta_m > 0\)
 - scales down marginal cost by \((1 + \Delta_{cA})\), \(\Delta_{cA} \geq 0\)

 2. Innovation:
 - scales down costs by \((1 + \Delta_{ci})\), \(\Delta_{ci} \geq 0\)
 - entails a private cost \(z > 0\)

- \(\Delta_{ci}\) and \(\Delta_{cA}\) are realised by the firm as random draws from suitably defined densities \(\varphi_{cA}(\Delta_{cA})\) and \(\varphi_{ci}(\Delta_{ci})\)
Counterfactuals and Anti-competitive Strategies

- Firm’s innovation behaviour in absence of any anti-competitive action defines its *counterfactual* position, which in turn defines its *type*:
 - **High-tech** \(t = H \) if innovation is profitable \(\pi_I \geq \pi_0 \)
 - **Low-tech** \(t = L \) otherwise \(\pi_I < \pi_0 \)
Counterfactuals and Anti-competitive Strategies

- Firm’s innovation behaviour in absence of any anti-competitive action defines its *counterfactual* position, which in turn defines its *type*:
 - **High-tech** \((t = H) \) if innovation is profitable \((\pi_I \geq \pi_0) \)
 - **Low-tech** \((t = L) \) otherwise \((\pi_I < \pi_0) \)

- From this counterfactual position, firm faces choice of 2 anti-competitive *strategies*
 - Anti-competitive action alone \((s = A) \), if \(\pi_A \geq \pi_{I+A} \)
 - Innovation and anti-competitive action together \((s = I + A) \), if \(\pi_A < \pi_{I+A} \)
Counterfactuals and Anti-competitive Strategies

- Firm’s innovation behaviour in absence of any anti-competitive action defines its *counterfactual* position, which in turn defines its *type*:
 - **High-tech** \((t = H)\) if innovation is profitable \((\pi_I \geq \pi_0)\)
 - **Low-tech** \((t = L)\) otherwise \((\pi_I < \pi_0)\)

- From this counterfactual position, firm faces choice of 2 anti-competitive *strategies*
 - Anti-competitive action alone \((s = A)\), if \(\pi_A \geq \pi_{I+A}\)
 - Innovation and anti-competitive action together \((s = I + A)\), if \(\pi_A < \pi_{I+A}\)

- Firm type and choice of preferred strategy depend on magnitudes of realised \(\Delta_{cI}\) and \(\Delta_{cA}\)
True Harm

- In general, consumer harm depends on the sign of the price change associated with any given strategy, relative to the appropriate counterfactual price.

\[h_{HA} = (p_A - p_I) > (p_A - p_0) = h_{LA} + h_{IA} \]

Result 1: \(h_{HS} > h_{LS}, s = A, I + A \)

Result 2: Possible that \(h_{LA} > 0 \) while \(h_{LI + A} < 0 \), but

Result 2: \(h_{LA} > 0 \Rightarrow h_{HI + A} > 0 \)
In general, consumer harm depends on the sign of the price change associated with any given strategy, relative to the appropriate counterfactual price.

Taking the variation in firm types and anti-competitive strategies into account, gives 4 ‘true harm’ variables:

\[h^H_A = (p_A - p_I) > (p_A - p_0) = h^L_A \]

\[h^H_{I+A} = (p_{I+A} - p_I) > (p_{I+A} - p_0) = h^L_{I+A} \]
True Harm

- In general, consumer harm depends on the sign of the price change associated with any given strategy, relative to the appropriate counterfactual price.

- Taking the variation in firm types and anti-competitive strategies into account, gives 4 ‘true harm’ variables:

\[
\begin{align*}
 h_H^A &= (p_A - p_I) > (p_A - p_0) = h_L^A \\
 h_H^{I+A} &= (p_{I+A} - p_I) > (p_{I+A} - p_0) = h_L^{I+A}
\end{align*}
\]

Result 1: \(h_H^s > h_L^s, \ s = A, I + A \)
True Harm

- In general, consumer harm depends on the sign of the price change associated with any given strategy, relative to the appropriate counterfactual price.

- Taking the variation in firm types and anti-competitive strategies into account, gives 4 ‘true harm’ variables

\[
\begin{align*}
 h^H_A &= (p_A - p_I) > (p_A - p_0) = h^L_A \\
 h^H_{I+A} &= (p_{I+A} - p_I) > (p_{I+A} - p_0) = h^L_{I+A}
\end{align*}
\]

Result 1: \(h^H_s > h^L_s \), \(s = A, I + A \)

Result 2: Possible that \(h^L_A > 0 \) while \(h^L_{I+A} < 0 \), BUT

\[
h^L_A > 0 \implies h^H_{I+A} > 0
\]
Authority observes situation that prevails once strategy is implemented

Authority does not know counterfactual situation
Competition Policy

- Authority observes situation that prevails once strategy is implemented
- Authority does not know counterfactual situation
- Errors may arise for 2 reasons:
 - Conditional on having specified counterfactual correctly, measurement error (due to uncertainty about realised Δ_{cA} and Δ_{cI})
 - Mis-specified counterfactual (e.g. if firm is high-tech, mis-identify it as low-tech: underestimate harm)
Cost of Decision Errors

- Possible to show that, conditional on observed strategy being $I + A$, probability of firm being high-tech is greater than when observed strategy is A. Therefore bigger risk of type II errors arising from mis-identification when $s = I + A$ than when $s = A$.

Result 3: Irrespective of underlying attitude towards errors, optimal policy will be harsher when observed strategy is $I + A$, in the sense that it will be more focussed on reducing type II (acquittal errors). For example, treat firms identified as low-tech that are engaging in strategy $I + A$ as if they were high-tech (i.e. more harshly).
Possible to show that, conditional on observed strategy being $I + A$, probability of firm being high-tech is greater than when observed strategy is A

Therefore bigger risk of type II errors arising from mis-identification when $s = I + A$ than when $s = A$

Result 3: Irrespective of underlying attitude towards errors, optimal policy will be harsher when observed strategy is $I + A$, in the sense that it will be more focussed on reducing type II (acquittal errors)
Possible to show that, conditional on observed strategy being $I + A$, probability of firm being high-tech is greater than when observed strategy is A

Therefore bigger risk of type II errors arising from mis-identification when $s = I + A$ than when $s = A$

Result 3: Irrespective of underlying attitude towards errors, optimal policy will be harsher when observed strategy is $I + A$, in the sense that it will be more focussed on reducing type II (acquittal errors)

For example, treat firms identified as low-tech that are engaging in strategy $I + A$ as if they were high-tech (i.e. more harshly)
Conclusion

- Paper investigates the role that innovation plays in competition cases
- Innovation should only be considered a mitigating factor to competition infringements if firm is ‘low-tech’
 - If high-tech, its decision to innovate is not conditional on its taking the anti-competitive action
- Investigated implications for errors that competition authority makes
- Showed that there is greater tendency towards type II (acquittal) errors when $s = I + A$ than when $s = A$
- Correcting for this makes optimal policy more stringent when $s = I + A$ than when $s = A$
 - Contradicts literature which effectively treats all firms as if they were low-tech
- Extension to deterrence
Thank you

Jacob Seifert

jcs43@st-andrews.ac.uk